

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Ground Improvement Techniques (16CE146)Course & Branch: B.Tech & CEYear & Sem: IV-B.Tech & II-SemRegulation: R16

<u>UNIT –I</u>

DEWATERING & GROUTING

1	What is dewatering? Explain its importance in civil engineering works.	[L1][CO1]	[12M]
2	List various well point dewatering systems and explain their suitability	[L1][CO1]	[12M]
	for different soils.		
3	What are the objectives of dewatering? What are the types of foundation	[L1][CO1]	[12M]
	drains?		
4	Explain the electro osmosis method to control ground water in low	[L2][CO1]	[12M]
	permeable soil?		
5	What is grouting? Explain in detail various field of applications of	[L1][CO1]	[12M]
	grouting.		
6	Explain compaction grouting, penetration grouting and fracture grouting	[L2][CO1]	[12M]
	with neat sketches.		
7	Explain the following grouting methods:	[L2][CO1]	[12M]
	(i) Compaction grouting (ii) Jet grouting		
8	Discuss in detail with suitable examples the field conditions which	[L2][CO1]	[12M]
	necessitate dewatering in soil.		
9	Discuss in details various well point techniques for dewatering soils.	[L2][CO1]	[12M]
	Explain the criteria for the selection of a particular fill material around the		
	drains.		
10	Explain briefly various methods of grouting.	[L2][CO1]	[12M]

<u>UNIT –II</u>

DENSIFICATION METHODS IN GRANULAR SOILS & COHESIVE SOILS

1	Discuss the principles of ground improvement in cohesion less soils.	[L2][CO2]	[12M]
2	Discuss the effectiveness of both vibro flotation and compaction piles for	[L2][CO2]	[12M]
	compacting the granular soils.		
3	(a) What are the objectives of dewatering? What are the types of	[L2][CO2]	[6M]
	foundation drains?		
	(b) Discuss how the stress history of a soil deposit affects its suitability	[L2][CO2]	[6M]
	for preloading with vertical drains.		
4	(a) Compare vibratory probe compaction and dynamic compaction.	[L2][CO2]	[6M]
	(b) Explain the vibro compaction method for cohesionless soils.	[L2][CO2]	[6M]
5	(a) Explain with a neat sketch sand drain to accelerate the drainage of	[L2][CO2]	[6M]
	impervious soils.		
	(b) What are the advantages of using wick geo drains?	[L1][CO2]	[6M]
6	(a) Discuss the need of ground improvement and write the principles of	[L2][CO2]	[6M]
	ground improvement in cohesionless soils		
	(b) Briefly explain about methods of impact at ground surface and at	[L1][CO2]	[6M]
	depth used in densification of granular soil deposits.		
7	(a) Write short notes on densification of cohesive soils by Lime columns.	[L1][CO2]	[6M]
	(b) Discuss the important formulae used in the improvement of soft clay	[L2][CO2]	[6M]
	deposits using stone columns.		
8	(a) Explain briefly with a neat sketch the vibro compaction method of	[L2][CO2]	[6M]
	densifying deep granular deposits.		
	(b) Explain the impact at ground surface method to densify granular soils.	[L2][CO2]	[6M]
9	(a) Explain in detail the in-situ densification of cohesive soils by using	[L2][CO2]	[6M]
	pre-loading with vertical drains.		
	(b) What is a sand drain? How is it constructed and is useful in densifying	[L1][CO2]	[6M]
	cohesive soil deposits?		
10	Explain various in-situ densification methods for cohesive soils.	[L2][CO2]	[12M]
10			

<u>UNIT –III</u>

STABILISATION

1	What are the different chemicals used in stabilization of soil?	[L1][CO3]	[12M]
2	(a) Discuss on suitability and applications of lime stabilization.	[L2][CO3]	[6M]
	(b) Explain the proportioning techniques of mechanical soil stabilization.	[L2][CO3]	[6M]
3	Describe a method suitable to stabilize a highway foundation in a hilly	[L1][CO3]	[12M]
	terrain with high rainfall data.		
4	Write a short note on:	[L2][CO3]	[12M]
	(i) Sodium silicate stabilization. (ii) Gypsum stabilization		
5	Discuss the gradation limits for soil-cement stabilization and explain its	[L2][CO3]	[12M]
	construction procedure.		
6	(a) What are the factors affecting mechanical stabilized soil properties?	[L1][CO3]	[6M]
	(b) Explain the mechanics of soil stabilization.	[L2][CO3]	[6M]
7	Write short notes on the following:	[L2][CO3]	[12M]
	(a) Bituminous stabilization. (b) Mechanical stabilization.		
8	Describe the properties of calcium chloride that are beneficial in	[L1][CO3]	[12M]
	stabilization of soils?		
9	Explain soil-lime reactions. What are the engineering benefits of lime	[L2][CO3]	[12M]
	stabilization of soils?		
10	(a) What is the necessity of soil stabilization?	[L1][CO3]	[6M]
	(b) Explain mechanical methods of soil stabilization. What are the	[L2][CO3]	[6M]
	different types test for soil stabilization?		_

<u>UNIT –IV</u>

REINFORCED EARTH & GEOSYNTHETICS

1	(a) Write the advantages and applications of reinforced earth structures	[L2][CO4]	[6M]
	with neat sketches.		100
	(b) Discuss the external stability aspects in the design of reinforced earth	[L2][CO4]	[6]VI]
2	(a) What is the main difference between geo-grid and geo-textile? Explain	[L2][CO4]	[6M]
	the field applications of geo-grid and geo-textiles.		
	(b) Explain separation and filtration functions of geo-textile. Mention	[L2][CO4]	[6M]
	applications based on these functions.		
3	(a) What is the objective of soil reinforcement?	[L2][CO4]	[6M]
	(b) What are the factors governing the design of reinforced earth walls?	[L2][CO4]	[6M]
4	(a) What are geomembranes? How geomembranes differ from geo	[L2][CO4]	[6M]
	textiles?		
	(b) What are the applications of geotextiles?	[L2][CO4]	[6M]
5	(a) What are geotextiles? Write a note on common nomenclature of	[L2][CO4]	[6M]
	geosynthetics.		
	(b) Explain with suitable examples the principles involved in geo-textile	[L2][CO4]	[6M]
	material as reinforcement for improving the bearing capacity of soil.		
6	(a) Explain any four engineering applications of reinforced earth with	[L2][CO4]	[6M]
	sketches		
	(b) Describe the procedure of designing a reinforced earth wall.	[L2][CO4]	[6M]
7	(a) Distinguish between geo textiles and geo grids.	[L2][CO4]	[6M]
	(b) Explain the applications of geo-textiles based on their separation and	[L2][CO4]	[6M]
	drainage functions.		
8	(a) Distinguish between woven and non woven geotextiles. How they are	[L2][CO4]	[6M]
	manufacture and what functions they can perform?		
	(b) What is a geo-grid? Explain different types of geo grids. How do they	[L2][CO4]	[6M]
	differ from geotextiles functionally?		
9	(a) What is reinforced earth? How does it differ from reinforced cement	[L2][CO4]	[6M]
	concrete and mechanically stabilized soil?		
	(b) With a neat sketch explain the various components of reinforced earth	[L2][CO4]	[6M]
	structure.		
10	(a) Explain clearly the functions of Geotextiles.	[L2][CO4]	[6M]
	(b) Compare geotextiles and geomembrane.	[L2][CO4]	[6M]

<u>UNIT –V</u>

EXPANSIVE SOILS

1	What is meant by expansive soils? What are the problems associated with expansive soils.	[L1][CO5]	[12M]
2	Give a detail discussion about various tests used for identification of expansive soils.	[L2][CO5]	[12M]
3	Explain briefly about improvement of expansive soils?	[L2][CO5]	[12M]
4	Discuss briefly about Consolidometer method with neat sketch.	[L2][CO5]	[12M]
5	What are the various foundation techniques adopted in expansive soils.	[L1][CO5]	[12M]
6	Explain briefly about under reamed piles and its applications.	[L2][CO5]	[12M]
7	Explain the following methods used for determination of swell pressure: (i) Consolidometer method (ii) Constant volume method	[L2][CO5]	[12M]
8	Discuss in detail about construction of under reamed pile and its advantages.	[L2][CO5]	[12M]
9	Write a short note on:(i) Granular fill(ii) Drilled piers	[L1][CO5]	[12M]
10	Explain briefly about CNS technology with neat sketch which is used as foundation technique.	[L2][CO5]	[12M]

Prepared by: Mr. B. RAJASEKHAR REDDY Assistant Professor/CE